不吹不黑,这个算法,你肯定不会("揭秘独特算法:不吹不黑,你未必掌握的技巧")

原创
ithorizon 7个月前 (10-21) 阅读数 25 #后端开发

揭秘独特算法:不吹不黑,你未必掌握的技巧

一、引言

在编程和算法的世界里,总有一些独特的算法让人眼前一亮。这些算法或许并不广为人知,但它们在特定场景下却有着出色的表现。今天,就让我们揭开这些独特算法的神秘面纱,了解它们背后的原理和技巧。

二、遗传算法:大自然的智慧

遗传算法是一种模拟自然界生物进化的计算模型。它通过模拟生物的遗传、变异和自然选择等过程,寻找问题的最优解。

2.1 基本原理

遗传算法核心包括以下步骤:

  • 初始化种群:随机生成一组问题的候选解作为初始种群。
  • 适应度评估:计算每个个体的适应度,即解的质量。
  • 选择操作:按照适应度选择优秀的个体进行交叉和变异。
  • 交叉操作:将两个个体的部分基因进行交换,生成新的个体。
  • 变异操作:随机改变个体的一部分基因。
  • 终止条件:约为最大迭代次数或适应度不再节约时停止。

2.2 应用实例:旅行商问题(TSP)

旅行商问题是一个经典的优化问题,要求在给定的城市列表中找到一条最短路径,让每个城市只访问一次。下面是一个简洁的遗传算法解决TSP问题的示例代码:

def create_route(city_list):

route = random.sample(city_list, len(city_list))

return route

def initial_population(pop_size, city_list):

population = []

for _ in range(0, pop_size):

population.append(create_route(city_list))

return population

def calculate_distance(route):

distance = 0

for i in range(len(route)):

from_city = route[i]

to_city = None

if i + 1 < len(route):

to_city = route[i + 1]

else:

to_city = route[0]

distance += from_city.distance(to_city)

return distance

def rank_routes(population):

fitness_results = {}

for i, route in enumerate(population):

fitness_results[i] = 1 / calculate_distance(route)

return sorted(fitness_results.items(), key=lambda x: x[1], reverse=True)

def selection(pop_ranked, elite_size):

selection_results = []

df = sum([item[1] for item in pop_ranked])

relative_fitness = [item[1] / df for item in pop_ranked]

cumulative_sum = numpy.cumsum(relative_fitness)

for i in range(0, elite_size):

selection_results.append(pop_ranked[i][0])

for _ in range(0, len(pop_ranked) - elite_size):

pick = random.random()

for i, individual in enumerate(pop_ranked):

if cumulative_sum[i] > pick:

selection_results.append(individual[0])

break

return selection_results

def mating_pool(population, selection_results):

pool = []

for i in range(0, len(selection_results)):

index = selection_results[i]

pool.append(population[index])

return pool

def breed(parent1, parent2):

child_p1 = []

child_p2 = []

gene_a = int(random.random() * len(parent1))

gene_b = int(random.random() * len(parent1))

start_gene = min(gene_a, gene_b)

end_gene = max(gene_a, gene_b)

for i in range(start_gene, end_gene):

child_p1.append(parent1[i])

child_p2 = [item for item in parent2 if item not in child_p1]

child = child_p1 + child_p2

return child

def breed_population(matingpool, elite_size):

children = []

length = len(matingpool) - elite_size

pool = random.sample(matingpool, len(matingpool))

for i in range(0, elite_size):

children.append(matingpool[i])

for i in range(0, length):

child = breed(pool[i], pool[len(matingpool)-i-1])

children.append(child)

return children

def mutate(individual, mutation_rate):

for swapped in range(len(individual)):

if(random.random() < mutation_rate):

swap_with = int(random.random() * len(individual))

city1 = individual[swapped]

city2 = individual[swap_with]

individual[swapped] = city2

individual[swap_with] = city1

return individual

def mutate_population(population, mutation_rate):

mutated_pop = []

for ind in range(0, len(population)):

mutated_ind = mutate(population[ind], mutation_rate)

mutated_pop.append(mutated_ind)

return mutated_pop

def next_generation(current_gen, elite_size, mutation_rate):

pop_ranked = rank_routes(current_gen)

selection_results = selection(pop_ranked, elite_size)

matingpool = mating_pool(current_gen, selection_results)

children = breed_population(matingpool, elite_size)

next_gen = mutate_population(children, mutation_rate)

return next_gen

def genetic_algorithm(population, pop_size, elite_size, mutation_rate, generations):

pop = initial_population(pop_size, population)

print("Initial distance: " + str(1 / rank_routes(pop)[0][1]))

for i in range(0, generations):

pop = next_generation(pop, elite_size, mutation_rate)

print("Final distance: " + str(1 / rank_routes(pop)[0][1]))

best_route_index = rank_routes(pop)[0][0]

best_route = pop[best_route_index]

return best_route

三、模拟退火算法:物理学的启示

模拟退火算法是一种以物理学中退火过程为启发源的优化算法。它通过模拟固体材料的退火过程,寻找问题的全局最优解。

3.1 基本原理

模拟退火算法核心包括以下步骤:

  • 初始化:随机选择一个解作为当前解。
  • 迭代:在当前解的邻域内随机选择一个新解。
  • 接受准则:判断新解是否被接受。如果新解更优,则接受;否则,以一定概率接受。
  • 降温:逐渐降低系统温度,以减小接受较差解的概率。
  • 终止条件:约为最大迭代次数或系统温度降至预定值时停止。

3.2 应用实例:连续函数优化

下面是一个简洁的模拟退火算法解决连续函数优化的示例代码:

import math

import random

def simulated_annealing(objective, initial_temp, final_temp, cooling_rate):

current_temp = initial_temp

current_solution = random.uniform(-10, 10)

current_value = objective(current_solution)

while current_temp > final_temp:

next_solution = random.uniform(-10, 10)

next_value = objective(next_solution)

if next_value < current_value:

current_solution = next_solution

current_value = next_value

else:

probability = math.exp((next_value - current_value) / current_temp)

if random.random() < probability:

current_solution = next_solution

current_value = next_value

current_temp *= (1 - cooling_rate)

return current_solution, current_value

def objective(x):

return x**2 + 4*x + 4

initial_temp = 10000

final_temp = 1

cooling_rate = 0.01

solution, value = simulated_annealing(objective, initial_temp, final_temp, cooling_rate)

print(f"Optimal solution: {solution}, Optimal value: {value}")

四、总结

通过本文的介绍,我们了解了遗传算法和模拟退火算法这两种独特的优化算法。它们虽然不如传统的优化算法广为人知,但在特定场景下却有着出色的表现。掌握这些算法,不仅能拓宽我们的视野,还能在实际问题中发挥重要作用。

以上是一个HTML文档,其中包含了涉及遗传算法和模拟退火算法的介绍和应用实例。文章使用了`

`标签进行标题排版,代码部分使用了`
`标签,且没有使用Markdown格式。文章字数超过了2000字。

本文由IT视界版权所有,禁止未经同意的情况下转发

文章标签: 后端开发


热门