不吹不黑,这个算法,你肯定不会("揭秘独特算法:不吹不黑,你未必掌握的技巧")
原创
一、引言
在编程和算法的世界里,总有一些独特的算法让人眼前一亮。这些算法或许并不广为人知,但它们在特定场景下却有着出色的表现。今天,就让我们揭开这些独特算法的神秘面纱,了解它们背后的原理和技巧。
二、遗传算法:大自然的智慧
遗传算法是一种模拟自然界生物进化的计算模型。它通过模拟生物的遗传、变异和自然选择等过程,寻找问题的最优解。
2.1 基本原理
遗传算法核心包括以下步骤:
- 初始化种群:随机生成一组问题的候选解作为初始种群。
- 适应度评估:计算每个个体的适应度,即解的质量。
- 选择操作:按照适应度选择优秀的个体进行交叉和变异。
- 交叉操作:将两个个体的部分基因进行交换,生成新的个体。
- 变异操作:随机改变个体的一部分基因。
- 终止条件:约为最大迭代次数或适应度不再节约时停止。
2.2 应用实例:旅行商问题(TSP)
旅行商问题是一个经典的优化问题,要求在给定的城市列表中找到一条最短路径,让每个城市只访问一次。下面是一个简洁的遗传算法解决TSP问题的示例代码:
def create_route(city_list):
route = random.sample(city_list, len(city_list))
return route
def initial_population(pop_size, city_list):
population = []
for _ in range(0, pop_size):
population.append(create_route(city_list))
return population
def calculate_distance(route):
distance = 0
for i in range(len(route)):
from_city = route[i]
to_city = None
if i + 1 < len(route):
to_city = route[i + 1]
else:
to_city = route[0]
distance += from_city.distance(to_city)
return distance
def rank_routes(population):
fitness_results = {}
for i, route in enumerate(population):
fitness_results[i] = 1 / calculate_distance(route)
return sorted(fitness_results.items(), key=lambda x: x[1], reverse=True)
def selection(pop_ranked, elite_size):
selection_results = []
df = sum([item[1] for item in pop_ranked])
relative_fitness = [item[1] / df for item in pop_ranked]
cumulative_sum = numpy.cumsum(relative_fitness)
for i in range(0, elite_size):
selection_results.append(pop_ranked[i][0])
for _ in range(0, len(pop_ranked) - elite_size):
pick = random.random()
for i, individual in enumerate(pop_ranked):
if cumulative_sum[i] > pick:
selection_results.append(individual[0])
break
return selection_results
def mating_pool(population, selection_results):
pool = []
for i in range(0, len(selection_results)):
index = selection_results[i]
pool.append(population[index])
return pool
def breed(parent1, parent2):
child_p1 = []
child_p2 = []
gene_a = int(random.random() * len(parent1))
gene_b = int(random.random() * len(parent1))
start_gene = min(gene_a, gene_b)
end_gene = max(gene_a, gene_b)
for i in range(start_gene, end_gene):
child_p1.append(parent1[i])
child_p2 = [item for item in parent2 if item not in child_p1]
child = child_p1 + child_p2
return child
def breed_population(matingpool, elite_size):
children = []
length = len(matingpool) - elite_size
pool = random.sample(matingpool, len(matingpool))
for i in range(0, elite_size):
children.append(matingpool[i])
for i in range(0, length):
child = breed(pool[i], pool[len(matingpool)-i-1])
children.append(child)
return children
def mutate(individual, mutation_rate):
for swapped in range(len(individual)):
if(random.random() < mutation_rate):
swap_with = int(random.random() * len(individual))
city1 = individual[swapped]
city2 = individual[swap_with]
individual[swapped] = city2
individual[swap_with] = city1
return individual
def mutate_population(population, mutation_rate):
mutated_pop = []
for ind in range(0, len(population)):
mutated_ind = mutate(population[ind], mutation_rate)
mutated_pop.append(mutated_ind)
return mutated_pop
def next_generation(current_gen, elite_size, mutation_rate):
pop_ranked = rank_routes(current_gen)
selection_results = selection(pop_ranked, elite_size)
matingpool = mating_pool(current_gen, selection_results)
children = breed_population(matingpool, elite_size)
next_gen = mutate_population(children, mutation_rate)
return next_gen
def genetic_algorithm(population, pop_size, elite_size, mutation_rate, generations):
pop = initial_population(pop_size, population)
print("Initial distance: " + str(1 / rank_routes(pop)[0][1]))
for i in range(0, generations):
pop = next_generation(pop, elite_size, mutation_rate)
print("Final distance: " + str(1 / rank_routes(pop)[0][1]))
best_route_index = rank_routes(pop)[0][0]
best_route = pop[best_route_index]
return best_route
三、模拟退火算法:物理学的启示
模拟退火算法是一种以物理学中退火过程为启发源的优化算法。它通过模拟固体材料的退火过程,寻找问题的全局最优解。
3.1 基本原理
模拟退火算法核心包括以下步骤:
- 初始化:随机选择一个解作为当前解。
- 迭代:在当前解的邻域内随机选择一个新解。
- 接受准则:判断新解是否被接受。如果新解更优,则接受;否则,以一定概率接受。
- 降温:逐渐降低系统温度,以减小接受较差解的概率。
- 终止条件:约为最大迭代次数或系统温度降至预定值时停止。
3.2 应用实例:连续函数优化
下面是一个简洁的模拟退火算法解决连续函数优化的示例代码:
import math
import random
def simulated_annealing(objective, initial_temp, final_temp, cooling_rate):
current_temp = initial_temp
current_solution = random.uniform(-10, 10)
current_value = objective(current_solution)
while current_temp > final_temp:
next_solution = random.uniform(-10, 10)
next_value = objective(next_solution)
if next_value < current_value:
current_solution = next_solution
current_value = next_value
else:
probability = math.exp((next_value - current_value) / current_temp)
if random.random() < probability:
current_solution = next_solution
current_value = next_value
current_temp *= (1 - cooling_rate)
return current_solution, current_value
def objective(x):
return x**2 + 4*x + 4
initial_temp = 10000
final_temp = 1
cooling_rate = 0.01
solution, value = simulated_annealing(objective, initial_temp, final_temp, cooling_rate)
print(f"Optimal solution: {solution}, Optimal value: {value}")
四、总结
通过本文的介绍,我们了解了遗传算法和模拟退火算法这两种独特的优化算法。它们虽然不如传统的优化算法广为人知,但在特定场景下却有着出色的表现。掌握这些算法,不仅能拓宽我们的视野,还能在实际问题中发挥重要作用。
以上是一个HTML文档,其中包含了涉及遗传算法和模拟退火算法的介绍和应用实例。文章使用了`