漫谈设计模式-技术要点详解(设计模式深度解析:核心技术要点全览)
原创
一、设计模式概述
设计模式是软件工程中的一种常见技术,它提供了一套经过验证的解决方案,用于解决软件开发中常见的问题。设计模式可以帮助我们减成本时间代码的可复用性、可维护性和可扩展性。本文将深入解析设计模式的核心技术要点,帮助读者更好地懂得和应用设计模式。
二、设计模式的分类
设计模式关键分为三大类:创建型、结构型和行为型。下面将分别介绍这三种类型的设计模式。
创建型设计模式
创建型设计模式关键关注对象的创建过程,关键有以下五种模式:
1. 单例模式(Singleton)
单例模式确保一个类只有一个实例,并提供一个全局访问点。
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;
}
}
2. 工厂方法模式(Factory Method)
工厂方法模式定义一个接口用于创建对象,但让子类决定实例化哪个类。工厂方法使一个类的实例化延迟到其子类。
public interface Product {
void operation();
}
public class ConcreteProductA implements Product {
@Override
public void operation() {
// 实现具体操作
}
}
public class ConcreteProductB implements Product {
@Override
public void operation() {
// 实现具体操作
}
}
public abstract class Creator {
public abstract Product factoryMethod();
}
public class ConcreteCreatorA extends Creator {
@Override
public Product factoryMethod() {
return new ConcreteProductA();
}
}
public class ConcreteCreatorB extends Creator {
@Override
public Product factoryMethod() {
return new ConcreteProductB();
}
}
3. 抽象工厂模式(Abstract Factory)
抽象工厂模式提供了一个接口,用于创建相关或依赖性对象的家族,而不需要明确指定具体类。
public interface AbstractFactory {
ProductA createProductA();
ProductB createProductB();
}
public class ConcreteFactoryA implements AbstractFactory {
@Override
public ProductA createProductA() {
return new ConcreteProductA();
}
@Override
public ProductB createProductB() {
return new ConcreteProductB();
}
}
public class ConcreteFactoryB implements AbstractFactory {
@Override
public ProductA createProductA() {
return new ConcreteProductC();
}
@Override
public ProductB createProductB() {
return new ConcreteProductD();
}
}
4. 建造者模式(Builder)
建造者模式将一个复杂化对象的构建与其即分离,让同样的构建过程可以创建不同的即。
public abstract class Builder {
public abstract void buildPartA();
public abstract void buildPartB();
public abstract Product getResult();
}
public class ConcreteBuilderA extends Builder {
private Product product = new Product();
@Override
public void buildPartA() {
product.addPart("PartA");
}
@Override
public void buildPartB() {
product.addPart("PartB");
}
@Override
public Product getResult() {
return product;
}
}
public class Director {
private Builder builder;
public Director(Builder builder) {
this.builder = builder;
}
public void construct() {
builder.buildPartA();
builder.buildPartB();
}
}
public class Product {
private List
parts = new ArrayList<>(); public void addPart(String part) {
parts.add(part);
}
public String show() {
return String.join(", ", parts);
}
}
5. 原型模式(Prototype)
原型模式通过复制现有的实例来创建新的实例,而不是通过构造函数创建。
public abstract class Prototype {
public abstract Prototype clone();
}
public class ConcretePrototypeA extends Prototype {
private String data;
public ConcretePrototypeA(String data) {
this.data = data;
}
@Override
public Prototype clone() {
return new ConcretePrototypeA(data);
}
}
结构型设计模式
结构型设计模式关注类和对象之间的组合,关键有以下七种模式:
1. 适配器模式(Adapter)
适配器模式允许将一个类的接口转换成客户期望的另一个接口,让原本接口不兼容的类可以一起工作。
public interface Target {
void request();
}
public class Adapter implements Target {
private Adaptee adaptee;
public Adapter(Adaptee adaptee) {
this.adaptee = adaptee;
}
@Override
public void request() {
adaptee.specificRequest();
}
}
public class Adaptee {
public void specificRequest() {
// ...
}
}
2. 桥接模式(Bridge)
桥接模式将抽象部分与实现部分分离,使它们可以自立变化。
public abstract class Abstraction {
protected Implementor implementor;
public Abstraction(Implementor implementor) {
this.implementor = implementor;
}
public abstract void operation();
}
public class RefinedAbstractionA extends Abstraction {
public RefinedAbstractionA(Implementor implementor) {
super(implementor);
}
@Override
public void operation() {
implementor.operationImpl();
}
}
public abstract class Implementor {
public abstract void operationImpl();
}
public class ConcreteImplementorA extends Implementor {
@Override
public void operationImpl() {
// ...
}
}
3. 组合模式(Composite)
组合模式允许将对象组合成树形结构,以即部分-整体的层次结构。
public abstract class Component {
public abstract void operation();
}
public class Leaf extends Component {
@Override
public void operation() {
// ...
}
}
public class Composite extends Component {
private List
children = new ArrayList<>(); @Override
public void operation() {
for (Component child : children) {
child.operation();
}
}
public void add(Component component) {
children.add(component);
}
public void remove(Component component) {
children.remove(component);
}
}
4. 装饰器模式(Decorator)
装饰器模式动态地给一个对象添加一些额外的职责,而不改变其接口。
public abstract class Component {
public abstract void operation();
}
public class ConcreteComponent extends Component {
@Override
public void operation() {
// ...
}
}
public abstract class Decorator extends Component {
private Component component;
public Decorator(Component component) {
this.component = component;
}
@Override
public void operation() {
component.operation();
}
}
public class ConcreteDecoratorA extends Decorator {
public ConcreteDecoratorA(Component component) {
super(component);
);
}
@Override
public void operation() {
super.operation();
// 添加额外的职责
}
}
5. 门面模式(Facade)
门面模式提供了一个统一的接口,用于访问子系统中的一群接口。
public class Facade {
private SubsystemA subsystemA;
private SubsystemB subsystemB;
public Facade() {
subsystemA = new SubsystemA();
subsystemB = new SubsystemB();
}
public void operation() {
subsystemA.operationA();
subsystemB.operationB();
}
}
public class SubsystemA {
public void operationA() {
// ...
}
}
public class SubsystemB {
public void operationB() {
// ...
}
}
6. 享元模式(Flyweight)
享元模式运用共享技术有效地拥护大量细粒度的对象。
public interface Flyweight {
void operation();
}
public class ConcreteFlyweight implements Flyweight {
private String intrinsicState;
public ConcreteFlyweight(String intrinsicState) {
this.intrinsicState = intrinsicState;
}
@Override
public void operation() {
// ...
}
}
public class UnsharedConcreteFlyweight implements Flyweight {
@Override
public void operation() {
// ...
}
}
public class FlyweightFactory {
private Map
flyweights = new HashMap<>(); public Flyweight getFlyweight(String key) {
if (!flyweights.containsKey(key)) {
flyweights.put(key, new ConcreteFlyweight(key));
}
return flyweights.get(key);
}
}
7. 代理模式(Proxy)
代理模式为其他对象提供一个代理以控制对这个对象的访问。
public interface Subject {
void request();
}
public class RealSubject implements Subject {
@Override
public void request() {
// ...
}
}
public class Proxy implements Subject {
private RealSubject realSubject;
public Proxy(RealSubject realSubject) {
this.realSubject = realSubject;
}
@Override
public void request() {
realSubject.request();
}
}
行为型设计模式
行为型设计模式关注对象之间的通信,关键有以下十一种模式:
1. 职责链模式(Chain of Responsibility)
职责链模式使多个对象都有机会处理请求,从而避免了请求发送者和接收者之间的耦合关系。
public abstract class Handler {
private Handler nextHandler;
public void setNextHandler(Handler nextHandler) {
this.nextHandler = nextHandler;
}
public final void handleRequest(Request request) {
if (nextHandler != null) {
nextHandler.handleRequest(request);
} else {
handle(request);
}
}
protected abstract void handle(Request request);
}
public class ConcreteHandlerA extends Handler {
@Override
protected void handle(Request request) {
// ...
}
}
public class ConcreteHandlerB extends Handler {
@Override
protected void handle(Request request) {
// ...
}
}
public class Request {
// ...
}
2. 命令模式(Command)
命令模式将请求封装为一个对象,从而可以使用不同的请求、队列或日志来参数化其他对象。
public interface Command {
void execute();
}
public class ConcreteCommandA implements Command {
private Receiver receiver;
public ConcreteCommandA(Receiver receiver) {
this.receiver = receiver;
}
@Override
public void execute() {
receiver.action();
}
}
public class Receiver {
public void action() {
// ...
}
}
public class Invoker {
private Command command;
public void setCommand(Command command) {
this.command = command;
}
public void executeCommand() {
command.execute();
}
}
3. 解释器模式(Interpreter)
解释器模式为语言创建解释器,用来解释该语言中的句子。
public interface Expression {
int interpret();
}
public class ConstantExpression implements Expression {
private int value;
public ConstantExpression(int value) {
this.value = value;
}
@Override
public int interpret() {
return value;
}
}
public class AdditionExpression implements Expression {
private Expression left;
private Expression right;
public AdditionExpression(Expression left, Expression right) {
this.left = left;
this.right = right;
}
@Override
public int interpret() {
return left.interpret() + right.interpret();
}
}
public class Interpreter {
public static void main(String[] args) {
Expression expression = new AdditionExpression(
new ConstantExpression(2),
new ConstantExpression(3)
);
System.out.println(expression.interpret());
}
}
4. 迭代器模式(Iterator)
迭代器模式提供了一种方法来访问聚合对象中各个元素,而又不暴露该对象的内部即。
public interface Iterator {
boolean hasNext();
Object next();
}
public interface Aggregate {
Iterator iterator();
}
public class ConcreteAggregate implements Aggregate {
private List
public void add(Object item) {
items.add(item);
}
@Override
public Iterator iterator() {
return new ConcreteIterator(items);
}
}
public class ConcreteIterator implements Iterator {
private List
private int index = 0;
public ConcreteIterator(List
this.items = items;
}
@Override
public boolean hasNext() {
return index < items.size();
}
@Override
public Object next() {
return items.get(index++);
}
}
5. 中介者模式(Mediator)
中介者模式定义一个对象来封装一组对象之间的交互。
public interface Mediator {
void send(String message, Colleague colleague);
}
public class ConcreteMediator implements Mediator {
private Colleague colleague1;
private Colleague colleague2;
public void setColleague1(Colleague colleague1) {
this.colleague1 = colleague1;
}
public void setColleague2(Colleague colleague2) {
this.colleague2 = colleague2;
}
@Override
public void send(String message, Colleague colleague) {
if (colleague == colleague1) {
colleague2.receive(message);
} else {
colleague1.receive(message);
}
}
}
public abstract class Colleague {
protected Mediator mediator;
public Colleague(Mediator mediator) {
this.mediator = mediator;
}
public abstract void send(String message);
public abstract void receive(String message);
}
public class ConcreteColleague1 extends Colleague {
public ConcreteColleague1(Mediator mediator) {
super(mediator);
}
@Override
public void send(String message) {
mediator.send(message, this);
}
@Override
public void receive(String message) {
// ...
}
}
public class ConcreteColleague2 extends Colleague {
public ConcreteColleague2(Mediator mediator) {
super(mediator);
}
@Override
public void send(String message) {
mediator.send(message, this);
}
@Override
public void receive(String message) {
// ...
}
}
6. 备忘录模式(Memento)
备忘录模式捕获一个对象的内部状态,并在该对象之外保存这个状态,以便稍后恢复它。
public class Memento {
private String state;
public Memento(String state) {
this.state = state;
}
public String getState() {
return state;
}
}
public class Originator {
private String state;
public void setState(String state) {
this.state = state;
}
public String getState() {
return state;
}
public Memento saveStateToMemento() {
return new Memento(state);
}
public void restoreStateFromMemento(Memento memento) {
state = memento.getState();
}
}
public class Caretaker {
private List
mementoList = new ArrayList<>(); public void add(Memento state) {
mementoList.add(state);
}
public Memento get(int index) {
return mementoList.get(index);
}
}
7. 观察者模式(Observer)
观察者模式定义了一种一对多的依赖性关系,当一个对象改变状态时,所有依赖性于它的对象都会得到通知并自动更新。
public interface Observer {
void update();
}
public class ConcreteObserverA implements Observer {
private Subject subject;
public ConcreteObserverA(Subject subject) {
this.subject = subject;
this.subject.addObserver(this);
}
@Override
public void update() {
// ...
}
}
public interface Subject {
void addObserver(Observer observer);
void removeObserver(Observer observer);
void notifyObservers();
}
public class ConcreteSubject implements Subject {
private List
observers = new ArrayList<>(); @Override
public void addObserver(Observer observer) {
observers.add(observer);
}
@Override
public void removeObserver(Observer observer) {
observers.remove(observer);
}
@Override
public void notifyObservers() {
for (Observer observer : observers) {
observer.update();
}
}
}
8. 状态模式(State)
状态模式允许一个对象在其内部状态改变时改变它的行为。
public abstract class State {
public abstract void handle(Request request);
}
public class ConcreteStateA extends State {
@Override
public void handle(Request request) {
// ...
}
}
public class ConcreteStateB extends State {
@Override
public void handle(Request request) {
// ...
}
}
public class Context {
private State state;
public void setState(State state) {
this.state = state;
}
public State getState() {
return state;
}
public void request(Request request) {
state.handle(request);
}
}
9. 策略模式(Strategy)
策略模式定义一系列算法,将每一个算法封装起来,并使它们可以互相替换。
public interface Strategy {
void algorithmInterface();
}
public class ConcreteStrategyA implements Strategy {
@Override
public void algorithmInterface() {
// ...
}
}
public class ConcreteStrategyB implements Strategy {
@Override
public void algorithmInterface() {
// ...
}
}
public class Context {
private Strategy strategy;
public Context(Strategy strategy) {
this.strategy = strategy;
}
public void setStrategy(Strategy strategy) {
this.strategy = strategy;
}
public void executeStrategy() {
strategy.algorithmInterface();
}
}
10. 模板方法模式(Template Method)
模板方法模式定义一个操作中的算法的骨架,而将一些步骤延迟